260 research outputs found

    The nature and evolution of Ultraluminous Infrared Galaxies: A mid-infrared spectroscopic survey

    Get PDF
    We report the first results of a low resolution mid-infrared spectroscopic survey of an unbiased, far-infrared selected sample of 60 ultraluminous infrared galaxies, using ISOPHOT-S on board ISO. We use the ratio of the 7.7um `PAH' emission feature to the local continuum as a discriminator between starburst and AGN activity. About 80% of all the ULIRGs are found to be predominantly powered by star formation but the fraction of AGN powered objects increases with luminosity. Observed ratios of the PAH features in ULIRGs differ slightly from those in lower luminosity starbursts. This can be plausibly explained by the higher extinction and/or different physical conditions in the interstellar medium of ULIRGs. The PAH feature-to-continuum ratio is anticorrelated with the ratio of feature-free 5.9um continuum to the IRAS 60um continuum, confirming suggestions that strong mid-IR continuum is a prime AGN signature. The location of starburst-dominated ULIRGs in such a diagram is consistent with previous ISO-SWS spectroscopy which implies significant extinction even in the mid-infrared. We have searched for indications that ULIRGs which are advanced mergers might be more AGN-like, as postulated by the classical evolutionary scenario. No such trend has been found amongst those objects for which near infrared images are available to assess their likely merger status.Comment: aastex, 4 eps figures. Revised version, accepted by ApJ (Letters

    Mid-infrared emission of galactic nuclei: TIMMI2 versus ISO observations and models

    Full text link
    We investigate the mid-infrared radiation of galaxies that are powered by a starburst or by an AGN. For this end, we compare the spectra obtained at different spatial scales in a sample of infrared bright galaxies. ISO observations which include emission of the nucleus as well as most of the host galaxy are compared with TIMMI2 spectra of the nuclear region. We find that ISO spectra are generally dominated by strong PAH bands. However, this is no longer true when inspecting the mid-infrared emission of the pure nucleus. Here PAH emission is detected in starbursts whereas it is significantly reduced or completely absent in AGNs. A physical explanation of these new observational results is presented by examining the temperature fluctuation of a PAH after interaction with a photon. It turns out that the hardness of the radiation field is a key parameter for quantifying the photo-destruction of small grains. Our theoretical study predicts PAH evaporation in soft X-ray environments. Radiative transfer calculations of clumpy starbursts and AGN corroborate the observational fact that PAH emission is connected to starburst activity whereas PAHs are destroyed near an AGN. The radiative transfer models predict for starbursts a much larger mid-infrared size than for AGN. This is confirmed by our TIMMI2 acquisition images: We find that the mid-infrared emission of Seyferts is dominated by a compact core while most of the starbursts are spatially resolved.Comment: 19 pages, 22 Figures, accepted by A&

    Discovery of strongly blue shifted mid-infrared [NeIII] and [NeV] emission in ULIRGs

    Full text link
    We report the discovery of blue shifted (delta(V) > 200 km/s) mid-infrared [NeIII] and/or [NeV] emission in 25 out of 82 ULIRGs (30% of our sample). The incidence of blue shifted [NeV] emission is even higher (59%) among the sources with a [NeV] detection -- the tell-tale signature of an active galactic nucleus (AGN). Sixteen ULIRGs in our sample, eleven of which are optically classified as AGN, have [NeIII] blue shifts above 200 km/s. A comparison of the line profiles of their 12.81um [NeII], 15.56um [NeIII] and 14.32um [NeV] lines reveals the ionization of the blue shifted gas to increase with blue shift, implying decelerating outflows in a stratified medium, photo-ionized by the AGN. The strong correlation of the line width of the [NeIII] line with the radio luminosity indicates that interaction of expanding radio jets with the dense ISM surrounding the AGN may explain the observed neon line kinematics for the strongest radio sources in this sample.Comment: Accepted for publication by ApJ Letters. 15 pages, 4 figure

    The extraordinary mid-infrared spectral properties of FeLoBAL Quasars

    Get PDF
    We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.Comment: ApJ, accepte

    ISO spectroscopy of star formation and active nuclei in the luminous infrared galaxy NGC 6240

    Full text link
    We present Infrared Space Observatory mid- and far-infrared spectroscopy of the merging galaxy NGC 6240, an object presenting many aspects of importance for the role of star formation and AGN activity in [ultra]luminous infrared galaxies. The mid-infrared spectrum shows starburst indicators in the form of low excitation fine-structure line emission and aromatic `PAH' features. A strong high excitation [OIV] line is observed which most likely originates in the Narrow Line Region of an optically obscured AGN. NGC 6240 shows extremely powerful emission in the pure rotational lines of molecular hydrogen. We argue that this emission is mainly due to shocks in its turbulent central gas component and its starburst superwind. The total shock cooling in infrared emission lines accounts for ~0.6% of the bolometric luminosity, mainly through rotational H_2 emission and the [OI] 63micron line. We analyse several ways of estimating the luminosities of the starburst and the AGN in NGC 6240 and suggest that the contributions to its bolometric luminosity are most likely in the range 50-75% starburst and 25-50% AGN.Comment: 5 figures. Accepted for publication in A&

    The distribution of silicate strength in Spitzer spectra of AGNs and ULIRGs

    Get PDF
    A sample of 196 AGNs and ULIRGs observed by the Infrared Spectrograph (IRS) on Spitzer is analyzed to study the distribution of the strength of the 9.7 micron silicate feature. Average spectra are derived for quasars, Seyfert 1 and Seyfert 2 AGNs, and ULIRGs. We find that quasars are characterized by silicate features in emission and Seyfert 1s equally by emission or weak absorption. Seyfert 2s are dominated by weak silicate absorption, and ULIRGs are characterized by strong silicate absorption (mean apparent optical depth about 1.5). Luminosity distributions show that luminosities at rest frame 5.5 micron are similar for the most luminous quasars and ULIRGs and are almost 10^5 times more luminous than the least luminous AGN in the sample. The distributions of spectral characteristics and luminosities are compared to those of optically faint infrared sources at z~2 being discovered by the IRS, which are also characterized by strong silicate absorption. It is found that local ULIRGs are a similar population, although they have lower luminosities and somewhat stronger absorption compared to the high redshift sources.Comment: Accepted for publication on ApJ
    • 

    corecore